

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: BE (13A03701) Course & Branch: B.Tech - CE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R13

<u>UNIT –I</u>

INTRODUCTION, BOXCULVERT & BRIDGE BEARING

10M 1. Explain various types of IRC loadings in the design of highway bridges. 2. Explain the importance of the site investigation of the bridge design. 10M

3. (a) What are the various loads to be considered for designing a Highway bridge? 04M (b) Sketch IRC class AA (Tracked Vehicle) loading giving clearances, dimensions and contact

area with salient note as per IRC 6-2000? 06M

4. (a) Write a brief note on 'Impact Factor' for various bridge loading standards. 05M

(b) What is the preliminary data required for designing a Highway Bridge. 05M

5. Explain the various loading cases of the box culvert with neat diagram. 10M

6. Design a reinforced concrete box culvert having a clear vent way of 3m by 3m. The superimposed dead load on the culvert is 12.8 kN/m². The live load on the culvert is 70kN/m², density of soil at site is 18kN/m³ and angle of repose of soil is 30°. Adopt M-20 grade concrete mix & Fe-415 grade tor steel. And also sketch the details of reinforcement. 10M

- 7. Design a box culvert having inside dimensions of 3m×3m, this culvert is subjected to a dead load of 14 kN/m² and a live load of IRC class AA tracked vehicle. Assume, the unit weight of soil is 18kN/m³. The angle of repose of soil is 30°. Use M25 concrete & Fe415 grade HYSD bars (Assume, road width is 7.5m). 10M
- 8. Design a steel rocker bearing for transmitting a vertical reaction of 1000 kN and a horizontal reaction of 100 kN at the support of a bridge girder, assuming the following permissible stresses according to IRC: 83-1982.

Permissible compressive stress in concrete bed block $= 5 \text{ N/mm}^2$ $= 165 \text{ N/mm}^2$ Permissible bending stress in steel plate $= 190 \text{ N/mm}^2$ Permissible bearing stress in steel plate $= 110 \text{ N/mm}^2$ Permissible shear stress in steel

Sketch the typical details of the rocker bearing.

9. Design an elastomeric bearing to support a T-beam girder of a major bridge using the following data:

Maximum dead load reaction/bearing = 340 KNMaximum live load reaction/bearing = 550 KNLongitudinal force due to friction for each bearing =35 KNEffective span of the girder = 23 m

Est	Estimated rotation at bearing of the girder due to dead & live loads = 0.003 radians, M20 grade			
concrete is used. Total estimated shear strain due to creep, shrinkage and temperature = 5×10^{-4}				
units. Draw the details of the bearing.				
10. a)	List out the importance of the site investigation of the bridge design.	02M		
b)	What are loading standards used for the highway bridges?	02M		
c)	Define impact factor.	02M		
d)	Write the general features of bearings used in the bridge.	02M		
e)	List out the various types of fixed and expansion bearings.	02M		

Prepared by: <u>M.MANIKANTAN</u>.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : BE (13A03701)		Course & Branch: B.Tech - CE				
Yea	ar & Sem: IV-B.Tech	n & I-Sem	Regulation: R13			
1.		ridge loadings specific		(D) IRC: 83	[]
2.	(A) IRC: 21-2000 The impact factor for	(B) IRC: 6-2000	(C) IRC: 83-1999	(D) IRC: 83	Г Г	1
۷.	$(A) \frac{4.5}{(6+L)}$	(B) $\frac{9}{(13.5+L)}$	(C) Both	(D) None	L]
3.	The impact factor fo	or steel bridges			[]
	$(A)\frac{4.5}{(6+L)}$	(B) $\frac{9}{(13.5+L)}$	(C) Both	(D) None	-	-
4.	The maximum comp	pressive strain in conc	rete in axial compression	on is	[]
	(A)0.003	(B) 0.0035	(C) 0.002	(D) None		
5.	For a broad gauge u	sed in Indian railways	s, the width of track is _	mm	[]
	(A) 1000	(B) 1500	(C) 762	(D) 1676		
6.	For a narrow gauge	used in Indian railway	ys, the width of track is	mm	[]
	(A) 1000	(B) 1500	(C) 762	(D) 1676		
7.	For a meter gauge u	sed in Indian railways	s, the width of track is _	mm	[]
	(A) 1000	(B) 1500	(C) 762	(D) 1676		
8.	The effective span	of the RCC bridge is	6m, then the impact fa	actor for IRC	classAA	tracke
	loading is%				[]
	(A) 10	(B) 19.55	(C) 19.75	(D) 25		
9.	The effective span	of the RCC bridge i	is upto 5m, then the in	npact factor f	or IRC	classA
	tracked loading is	%			[]
	(A) 10	(B) 19.55	(C) 19.75	(D) 25		
10	. The minimum cross columns)	s sectional area of lo	ngitudinal reinforceme	nt shall be no	t less, (for RC
	(A) 0.8%	(B) 1.0%	(C) 4%	(D) 6%	[]
11	. The ground contact	width of the IRC class	sAA tracked vehicle is	m.	[]
	(A) 1.0	(B) 1.20	(C) 0.85	(D) 0.90		
12		omerged masonry or ited to% of full	concrete structures, the	buoyancy eff	ect thro	ugh po
	(A) 20	(B) 25	(C) 30	(D) 15	L	J
13	• •	acked vehicle of Tota	` '	(2) 10	[1
10	(A) 1000	(B) 700	(C) 350	(D) 500	L	1
14	` '	hickness of slab gener	, ,	(- / 500	ſ	1
- '	(A) L/20 to L/15	(B) L/10 to L/15	(C) L/20	(D) None of	f these	1
15	` '	, ,	0°, then coefficient of a	` '		
	(A)3	(B) 1/2	(C) 1/3	(D) 2	[1

16 In how1	haidht af 1 1	15 41 : C		a 1-NT/. 2
	height of water level is	•	water pressure is (D) 50	
(A)30	(B) 60	(C) 45	` ′	[]
_	way width for two lane		• •	
(A)7.50m	(B) 4.25m	(C) 12.0m	(D) None	
	(W) on the slab of box		(B) DI/	l J
(A) 3PI/e	(B) PI/2e	(C) PI	(D) PI/e	
	is full with water, a max	ximum pressure intensit	$y, p = \underline{\hspace{1cm}}$ (when	re, w= density
of water & h= dep				[]
$(A) wh^2$	(B) w/h	(C) wh	(D) w/h^2	
20. Expansion bearing				[]
(A) Horizontal mo	vements (B) Rotation	ns (C) Vertical moveme	ents (D) Bo	oth A&B
21. Fixed bearings per	rmit			[]
(A) Horizontal mo	ovements (B) Rotation	ns (C) Vertical moveme	ents (D) Bo	oth A&B
22. Maximum shear s	tress for turned, fixed bo	olts and pins is		[]
$(A) 0.43 f_y$	(B) $0.42f_y$	(C) $0.45f_y$	(D) $0.41f_y$	
23. The minimum dia	meter of the roller shall	be not less thanmm		[]
(A) 65	(B) 75	(C) 55	(D) 44	
24. The hardness valu	e should be in the range	of		[]
(A) (60±5) IRHD	(B) (50±5) IRHD	(C) 70 IRHD	(D) None	
25. In case of major b	ridges, the cost of bearing	ngs are in the range of _	% of the tot	al cost of the
bridge				[]
(A) 5 to 10	(B) 10 to 15	(C) 15 to 20	(D) None	
26. In steel roller cum	rocker bearing, the diar	neter of rollers generall	y preferred as	[]
(A) 75mm	(B) 100mm	(C) 100 to 150mm		
` '	still standing is a pedest	, ,	, ,	
were Miles riveri		C		[]
(A)Switzer land	(B) Turkey	(C) India	(D) China	
	e bridge is <6m then it is			[]
(A)Major bridge	(B) Culvert	(C) Minor bridge	(D) Deck bridge	ge
_	e bridge lies b/n 6m to 6			
	(B) Culvert bridge is >60m then it		(D) Deck bridge	-
(A) Major bridge	•	(C) Minor bridge	(D) Deck brid	[] oe
	ling passage over an obs	` '		~
(A)Dam	(B) Bridge	(C) Reservoir	(D) Barrage	[]
32. Road or railways	over a valley are known		. , .	
(A)Aquiduct	(B) Bridge	(C) Viaduct	(D) Footpath	
33. The box culvert is	analyzed for			[]
(A)Moments	(B) Axial thrusts	(C) Shear forces	(D) All	
34. In loading cases, f	or two different ratios o	f (L/H)		[]
(A) 2&2.5	(B) 1&1.5	(C) 3&3.5	(D) 4&4.5	
35. The fixed end mor	ments developed for o	different loading cases		[]
(A) 6	(B) 5	(C) 10	(D) 20	
36. The shear modulu	s of the elastomeric bear	ring shall be not less tha	n	[]
	(B) 0.8 N/mm^2	· ·		

37. The ratio of overa	ll length to breadth shou	ld be equal to or less	s than	[]
(A) 5	(B) 4	(C) 3	(D) 2		
38. The overall thickr	ness of the bearing shoul	d be in the range of -	and of the o	verall	brea
(A) 1/5, 1/10	(B) 1/6, 1/8	(C) 1/10, 1/5	(D) 1/8, 1/6	[]
39. Chloroprene rubber is also known as]
(A)Poly propylen	e (B) Iso propylene	(C) Neoprene	(D) None		
40. The shear modulu	s of the elastomeric hear	ring shall be not less	than	Г	1

(B) 0.8 N/mm^2 (C) 0.6 N/mm^2 (D) 0.4 N/mm^2

(A) 1.0N/mm^2

Prepared by: **M.MANIKANTAN**

QUESTION BANK 2016